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1. INTRODUCTION 

Today, the focus of the aviation industry is to build efficient, sustainable planes. This is being 

done in many ways, such as composite material fuselages and wings, high-bypass ratio engines, 

and eco-friendly fuel sources. At the forefront of such development, as in many other spheres 

of development today, are computer systems, especially computer systems that can learn from 

previous experiences and reduce the computational cost of simulation-aided design.   

1.1 The Development of Computer Science in Aviation 

Computer science is an integral part of the research and development done in aviation. From 

not being used at all in designing aircrafts such as the Concorde and the early generation Boeing 

747s to being used to design the entire aircrafts today, the role of computers has increased 

greatly in the aviation sector.  

Aircraft design is an interdisciplinary task, with multiple mutually interdependent systems. The 

analyses of such systems that is conducted in the design process tends to be computationally 

expensive due to the correlated nature of the system. It is here that machine learning plays a 

vital role by reducing the costs (technical, human, computational, and time) incurred during 

design. This is done by using numerous algorithms that can approximate the design simulation 

solutions.  

1.2 Introduction to the Paper 

This seminar, and its associated report, is based on ‘Knowledge Transfer Through Machine 

Learning in Aircraft Design’. The paper was published in the November 2017 issue of IEEE 

Computational Intelligence Magazine. The research for this paper was done by researchers at 

the School of Computer Science and Engineering, Nanyang Technological University, 

Singapore, in conjunction with Rolls-Royce@NTU Corporate Lab. 

As stated in Section 1.1, the paper aims to summarise the role that machine learning currently 

plays in the discipline of aircraft design, and explore the possibilities of incorporating 

contemporary advances in the field of machine learning to increase its impact in the domain.  
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Figure 1: The various parts of a Grumman F-14 Tomcat 

2. BACKGROUND WORK AND LITERATURE SURVERY 

2.1 The Current Use of Machine Learning in Aircraft Design 

Aircraft design is an incorporative and multidisciplinary task. It can be described as a 

multidisciplinary design optimisation (MDO) problem. A MDO is explained in detail in 

Section 3.1.  

Before the advent of computer aided design technologies such as CATIA, aircraft design was 

a labour intensive, physical experiment. Multiple models had to be created and tested for each 

aircraft system and subsystem, including models for the multiple interdependent systems of an 

airplane. Such a design effort required time, and ample human and monetary resources.  

With the use of specialised design software running on high-performance computer systems, it 

has become possible to develop high precision mathematical models of physical systems. 

Modern analyses are heavily reliant on such models. These aforementioned models are solved 

for a discretised domain to obtain numerical solutions.  

However, just as the manual design effort had a set of problems associated with it, so do 

simulation models, namely computational complexity. The improvement in the accuracy of 

any model, particularly complex models of interconnected systems, comes with the price of 

increased computational complexity. For example, depending on the size and accuracy 
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requirements for a computational fluid dynamics (CFD) simulation, the simulation can take 

between a few minutes and a few weeks to complete. As any large-scale design effort requires 

potentially hundreds or thousands of simulations, it is evident that such long simulations are 

undesirable. One could reduce the accuracy of each simulation, but this can potentially result 

in a less fault-proof and more error-prone system, which is again, an objectionable and 

unwanted situation. 

It is in such design simulations that machine learning is used. In aircraft design, machine 

learning is principally used to approximate these complex and expensive physics-based 

simulations. Supervised regression and surrogate models tend to be used for such tasks. The 

range of models used include Gaussian process regression (GPR, kriging), co-kriging, neural 

networks, and radial basis functions. Currently, a large proportion of machine learning based 

research and application for aircraft design has been in the following fields: 

1. Data-driven surrogate modelling of physical phenomenon 

2. Machine learning complemented physics solutions 

The next two subsections will be describe each of the fields mentioned above.  

2.1.1 Data-driven Surrogate Modelling of Physical Phenomenon  

Regression models have been a popular choice in the domain of aircraft design. They are 

chiefly used to approximate computationally expensive physics-based numerical simulations.  

For example, in [1], a polynomial regression model and radial basis neural network 

combination was used to obtain the optimised shape of a supersonic turbine with multiple 

design variables. In [2], the authors constructed a GPR model to approximate the computational 

structural mechanics analysis of a turbine disc under mechanical and thermal load conditions. 

Variable-fidelity physics simulations is another popular application of regression models. In 

the field of scientific simulation and modelling, fidelity refers to the degree to which a 

simulation or a model reproduces the behaviour and state of a real world object. A model with 

a high accuracy level is termed a ‘high-fidelity’ model. As stated earlier in 2.1.2, greater levels 

of exactness in a simulation come with the added cost of increased computational complexity. 

Therefore, a low-fidelity model is less accurate but is computationally cheaper, while a high-

fidelity model is more accurate and computationally taxing. 



4 

For example, the divergence between low and high-fidelity computational fluid dynamic 

simulations was predicted using a kriging model by the authors in [3].  

2.1.2 Machine Learning Complemented Physics Simulations 

A set of highly complex partial differential equations (PDEs) called the Navier-Stokes 

equations are the governing equations for CFD. These equations must be solved numerically 

as they do not have an analytical solution. However, a direct numerical simulation of these 

equations can be expensive, especially in the case of turbulent flows ubiquitous in aerodynamic 

applications.  

The Reynolds-Averaged Navier-Stokes (RANS) equations form a suitable simplification of the 

equations, and it is common to solve these equations instead. In order to enhance the accuracy 

and consistency of RANS, [44] proposed the following idea: generalisable machine learning 

algorithms that can be used to build a representation of turbulence modelling closure terms. 

These terms are a pivotal part of the any RANS-based approach. The authors of [44] proved 

the feasibility of this approach by training a neural network using data from a set of RANS-

based CFD simulations with the Spalart-Allamaras turbulence model, after which they then ran 

a new set of RANS-based CFD runs using the aforementioned neural network as the turbulence 

model, and successfully reproduced the original results. 

The RANS equations based model is one of the simple physics based models. Too account for 

the shortcomings of these simpler models in contrast to higher-fidelity, more precise models, a 

correction factor was identified [5] [6] [7]. The methodology for this identification procedure 

was as follows: the correction factor for multiple variations of a problem was identified using 

inverse modelling, after which a Gaussian process regression model was built to learn the 

correction factor as a function of problem-specific features. This model was then added to the 

simplified physics simulations to produce more accurate results, while remaining 

computationally viable. 
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3. METHODOLOGY  

As stated in Section 1.2, the design of aircrafts involves the complex analyses of numerous 

interdependent systems. This is a multidisciplinary effort with the objective of optimising and 

improving a certain target task that has a set of constraints associated with it, for instance 

maximising the amount of lift generated by a wing of a particular set of dimensions that is 

made of a certain material. This is called a multidisciplinary design optimisation problem. 

3.1 Multidisciplinary Design Optimisation  

This multidisciplinary design optimisation (MDO) problem can be formally described as a non-

linear programming task with the goal of optimising the objective, subject to a set of 

constraints.  

 

Figure 2: A simple aircraft wing 

A key part of the MDO process is problem formulation. Consider the aforementioned example 

at the beginning of this section: maximising the amount of lift generated by a wing of a 

particular set of dimensions that is made of a certain material. 
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 Problem formulation for a MDO consists of the following: 

1. Selection of design variables: A design variable is an attribute of the design process that 

can be controlled by the team of designers, for example: the dimensions and material 

of the wing. 

2. Constraints: A constraint is a limitation that exists in the design process for a certain 

reason, for example: the maximum length of the wing. 

3. Objective: The objective is the attribute that the MDO is set up to optimise, for example: 

maximising the lift generated by the wing with the aforementioned design variables and 

constraints.  

As a MDO process is multidisciplinary, the objectives and constraints must also be assessed 

from the analyses outputs of multiple disciplines. This poses an important challenge in the 

design process: the coupling of systems being analysed and designed needs to be managed 

efficiently and effectively. If all the interdependencies are considered properly, a more precise 

estimation and approximation of the actual system behaviour is obtained, which is naturally a 

more desirable solution.  

Due to the depth and complexity in modern aircraft design, specialist teams are required to 

work together and build sound physics and mathematical analytical models that will be used to 

simulate both, the standalone and interdependent systems, of the airplane.     

3.2 The Shortcomings in the Current Application of Machine Learning 

The current applications of machine learning in aircraft design discussed in Section 2.1.2 are 

plagued by certain weaknesses and shortcomings. The most significant observation regarding 

the shortcomings is as follows: a large amount of training data, in the range of hundreds or 

thousands of instances, is required in order to build sufficiently good models that are at 

effective at making predictions. Obtaining data points from physical experiments or CFD 

simulations is very expensive, especially in aerodynamic and aerospace applications. This leads 

to an additional problem: the paucity of data. 

As a result of these drawbacks, the existing usage of machine learning in aircraft design suffers 

from a problem called ‘cold start’. It is the problem in which considerable amount of resources 

are used to generate the initial database for a new problem. This process can take anywhere 

from hours to days, depending on the accuracy level the simulation is going to be run at. 

Therefore, this cold start problem can act as a severe bottleneck in aircraft design. 
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3.3 Overcoming the Cold Start Problem using Knowledge Transfer 

With the amount of research and development that has been done, and is being carried out in 

aircraft design, there likely already exists a myriad of germane and admissible data related to 

the design of various systems in an aircraft. In the field of data science and analytics, the ability 

to exploit data distinguishes a domain expert from a dilettante. Due to the increasing demands 

of modern engineering design and the costs associated with computationally expensive 

simulations, there is an impetus and scope for the development of algorithms that can 

automatically extract and transfer knowledge from related design efforts to improve the 

efficiency of future design exercises. 

For example, in research conducted for a neural network information processing system, using 

Gaussian process regression for cross-domain knowledge transfer, the time taken to find high-

quality solutions decreased by up to 40% as compared to traditional methods that didn’t use 

any transfer algorithms [8] [9]. 

The potential of saving any resources using such techniques is of value in all spheres of 

engineering.  

Although this field is very promising, if misused, it will be detrimental for the design process. 

A direct transfer and reuse of past knowledge and data can be worse than no knowledge transfer 

at all if the data is not properly adapted for the target process. This occurs as the source 

process/processes may not exactly match the domain of the target function. 

The following three sections, Sections 3.3.1 – 3.3.3, highlight and discuss the techniques and 

technologies that can be used to facilitate automatic knowledge transfer across design 

exercises. 

3.3.1 Transfer Learning  

Clean slate design i.e. design with no prior knowledge, is a very arduous process, especially 

for the design of complex systems, for which it is an almost impossible process. The enormity 

of the task of aircraft design necessitates the need for making simplifying assumptions based 

on past experiences and technical knowledge. This, paired with the decomposition approach of 

a MDO, and the intrinsic incremental nature of design, suggests that there is a copious amount 

of data and knowledge available from projects done in the past, and projects being done in 

parallel with the current target design. This data can be exploited for use in the target design to 

improve the accuracy of models, and the quality of decisions. 
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For example, a team engaged in the design of the main landing gear of an aircraft can use 

successful past designs as a reference. These ‘source’ designs can then be modified as required 

by the target team for their design effort. Relevant knowledge may also be obtained from 

different parts of an aircraft that fulfil a similar role, as that part may have similar design 

characteristics as the target system or part. 

Until fairly recently however, transfer learning for optimisation, as described above, has barely 

been used, with only a few published works [10]-[14]. The algorithm used for optimisation is 

constructed from the beginning, as it must fit the target domain exactly. 

Using knowledge transfer from a source task, transfer learning can improve the learning and 

accuracy of the target task’s predictive function. 

 

Figure 3: Transfer learning 

3.3.2 Multi-Task Learning  

Aircraft design involves the design of numerous interdependent and interconnected systems, 

leading to hundreds, if not thousands, of design parameters. 

For example, consider a turbofan engine. Its functionality depends on a set of interconnected 

systems, such as the high-pressure compressor, booster, and combustor. The monolithic design 
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optimisation of such a system would be very expensive due to the computational costs of 

running precise simulations, and the number of design variables. 

Due to this, a common design optimisation technique is to form a sub-problem. This sub-

problem constitutes only a small subset of all design parameters. Depending on the 

combination of the design variables being considered, different variations of sub-problems are 

obtained. 

Consider, for example, the aforementioned turbofan engine design optimisation. The objective 

of the design team might be to maximise the thrust produced by the engine as a function of the 

material properties of the high-pressure compressor blades. One variation might study the 

engine using composite material X, while the other studies the engine using composite material 

Y. 

Multi-task learning is suited for such design processes. Multi-task learning assumes that there 

are multiple related tasks that solved simultaneously in order to facilitate knowledge transfer, 

in contrast to transfer learning, which uses data from previous experiences. For regression 

models used in multi-task learning, the model aims to learn the following mapping: 

                                                                   f : X → RN                                             ...Equation 1 

In Equation 1, X represents a common set of input parameters, and N outputs belong to different 

tasks [8].  

By learning related tasks together using shared representation, the generalisation performance 

of multi-task learning is contended to improve by exploiting shared knowledge in the training 

data of various tasks. A single multi-task model built from data sourced from various related 

design efforts can be used to improve multiple optimisation algorithms at the same time. 

The overall computational cost of a design effort is reduced by using such an approach, as the 

design parameter space does not have to be searched repeatedly, leading to a lesser need for 

expensive simulations. 
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Figure 4: Multi-task learning 

3.3.3 Multi-View Learning  

In design simulations, models of physical structures of interest and significance can be analysed 

from multiple views: 3-D, 2-D, or 1-D. The view chosen for analysis depends of the type of 

statistics the engineering and design team is looking for, for example, while analysing the aft 

pressure bulkhead of an aircraft, the design team may consider either a 3-D view if the external 

forces acting on it are of interest, or a 2-D view if the internal forces of the bulkhead are of 

prime importance. 

Therefore, it is possible to obtain data that provides an understanding of mechanics of the 

system components from different perspective, especially if the computational budget is 

restricted.   

The field of multi-view learning is suited for analysis of multifaceted data streams of the 

aforementioned type. This fairly new technique jointly learns a function for each perspective 

in order to exploit the redundant views of the same domain, and consequently, improves 

prediction performance [15]. This form of learning is characterised by heterogeneous features 

that can be partitioned into views. 



11 

Multiple viewpoints of a certain system generally occur in the form of numerical simulations 

that emphasise on a specific facet of that component. This is achieved by skewing the fidelity 

of the simulation in favour of the phenomena of interest.  

 

Figure 5: Multi-view learning 

3.4 Case Study: An Application of Transfer Learning for Engine Development  

Engine development and design has been chosen as a case study to demonstrate the use of 

transfer learning in aircraft design. 

In the preliminary phase of engine development, a major task is the assessment of the overall 

engine attributes, such as thrust generated, weight of the engine, how it disrupts airflow around 

the wing, and its fuel consumption. These values are measured by simulations conducted by 

the design team, with a set of given performance parameters such as temperatures, pressures, 

and velocities. 

Exploring this space during preliminary development allows for the discovery of a good 

starting point for the rest of the design process. The adoption of surrogate modelling comes as 

no surprise, given the sparseness of the design space due to the high dimensionality and cost 

of numerical simulations. Without knowledge transfer, the only data available is the data 
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obtained from the simulations, which can be insufficient due to the costs associated with 

generating it. The data scarcity poses issues to the learning of the surrogate model, and will 

cause a poor fit of the response function.  

As the design objective is to improve the accuracy of the model while keeping computational 

costs low, knowledge transfer represents a viable solution. The reuse of large amounts of 

simulation data from previous distinct, but possibly related, design efforts (in this case study, 

previous engine design efforts) is a part of the knowledge transfer solution. If the machine 

learning algorithm being used is able to exploit the latent synergy between designs, this pool 

of data is, computationally wise, accessible for free.  

3.4.1 Case Study Parameters 

In this case study, the data that has been captured is for an engine of a different specification 

as compared to the target i.e. the engine that is the focus of the design effort. However, some 

underlying relationship between both engines is recognised, and both design efforts consider 

the same set of input and output parameters. 

The input parameters are: 

1. Altitude 

2. Pressure ratio – Compressor 

3. Pressure ratio – Burner 

4. Efficiency – Turbine 

5. A8/A2 – Nozzle  

The output parameters are: 

1. Net thrust 

2. Fnet/W 

3. Fuel flow 

4. Thrust specific fuel consumption (TSFC) 

5. Core airflow 

6. Weight 

3.4.2 Case Study Data  

Real-world data for this case study was provided by Rolls-Royce. The data included 274 

source, and 100 target simulations.  
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10-fold cross-validation was used to approximate the generalisation error.  

3.4.3 Evaluation 

Transfer learning (Section 3.3.1) is the technique used to improve the learning of the target 

task. To evaluate the performance enhancement that can be achieved by following this 

methodology, an empirical comparison with traditional surrogate learning is carried out. This 

consists of applying Gaussian process (GP) regression on the target database. To demonstrate 

that a direct transfer/combination of data may not improve the learning, the source and target 

data is combined, and Naïve-Transfer GP (NT-GP) is applied. The final two methods applied 

are Adaptive Transfer GP (AT-GP), and a Metaheuristic-based Instance Selection for Transfer 

(MIST). For each method, the error is calculated using the root mean square error (RMSE) 

measure. 

The results of this study are discussed in Section 4.  
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4. RESULTS AND DISCUSSION 

The results of the case study presented in Section 3.4 are depicted in Figure 6. 

 

Figure 6: The results of the case study 

It can be seen from the figure that there is a considerable difference between the performance 

of GP and NT-GP. The results of NT-GP are significantly worse for each output parameter. 

This proves that a direct, naïve transfer and combination of data resulted in a negative transfer 

that affected the accuracy of the prediction algorithm.  

Meanwhile, the two adaptive methods outperform NT-GP. In this case, AT-GP offers only a 

slight improvement over GP, and MIST results in a dramatic increase of the accuracy of the 

prediction algorithm. However, MIST relies on a wrapper strategy to find the optimal subset 

of the source data, limiting its scalability. Hence, efficiency wise, AT-GP may be a more 

desirable option. 
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5. CONCLUSION 

Aircraft are an integral part of modern society. Its design is a MDO problem, and is 

characterised by the complex analyses of mutually independent systems. Machine learning is 

used to reduce the computational costs of these analyses.  

Aircraft design is an incremental task that is heavily reliant on previous data, and there exists 

knowledge from completed projects that can be used and exploited to improve the current 

design performance. The current role of machine learning in aircraft design has been 

summarised, and limitations have been identified. Three advanced learning techniques for 

knowledge transfer (transfer learning, multi-task learning, and multi-view learning) are then 

discussed, which can lead to better performance of the predictive algorithm while keeping the 

computational costs viable.  

Transfer learning uses data from the source to augment the approximation of the target domain 

of interest. Multi-task learning aims to simultaneously learn approximations for multiple 

variants of a similar domain. Multi-view learning aims to utilise data from different 

perspectives to construct more accurate approximations.    
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